iBGP: A Bipartite Graph Propagation Approach for Mobile Advertising Fraud Detection

Author:

Hu Jinlong1ORCID,Liang Junjie1,Dong Shoubin1ORCID

Affiliation:

1. School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China

Abstract

Online mobile advertising plays a vital financial role in supporting free mobile apps, but detecting malicious apps publishers who generate fraudulent actions on the advertisements hosted on their apps is difficult, since fraudulent traffic often mimics behaviors of legitimate users and evolves rapidly. In this paper, we propose a novel bipartite graph-based propagation approach, iBGP, for mobile apps advertising fraud detection in large advertising system. We exploit the characteristics of mobile advertising user’s behavior and identify two persistent patterns: power law distribution and pertinence and propose an automatic initial score learning algorithm to formulate both concepts to learn the initial scores of non-seed nodes. We propose a weighted graph propagation algorithm to propagate the scores of all nodes in the user-app bipartite graphs until convergence. To extend our approach for large-scale settings, we decompose the objective function of the initial score learning model into separate one-dimensional problems and parallelize the whole approach on an Apache Spark cluster. iBGP was applied on a large synthetic dataset and a large real-world mobile advertising dataset; experiment results demonstrate that iBGP significantly outperforms other popular graph-based propagation methods.

Funder

Science and Technology Planning Project of Guangdong Province

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3