Optimized Loading of TiO2 Nanoparticles into Electrospun Polyacrylonitrile and Cellulose Acetate Polymer Fibers

Author:

Nkabinde Sibongile C.1,Moloto Makwena J.1ORCID,Matabola Kgabo P.2

Affiliation:

1. Department of Chemistry, Faculty of Applied and Computer Sciences, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900, South Africa

2. Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa

Abstract

Polyacrylonitrile (PAN), cellulose acetate (CA), PAN-TiO2, and CA-TiO2 nanofibers were prepared using the electrospinning technique under varying the loading of the TiO2 nanoparticles. The latter TiO2 nanoparticles were prepared using the sol-gel method by varying the calcination temperatures. The absorption and emission spectra illustrated the formation of TiO2 nanoparticles with an increase in absorption band edges with smaller particles. The TEM results showed the spherical morphology of the nanoparticles calcined at 500°C with an average diameter of 12.2±3.3nm. XRD analysis revealed anatase phase as the dominant crystalline phase of the nanoparticles. TiO2 nanoparticle loadings of 0.2 and 0.4 wt% were incorporated into 16 wt% CA solutions while 1, 2, and 3 wt% of TiO2 nanoparticles were incorporated into 10 wt% PAN solutions. The SEM results illustrated the lowering in diameter and morphology of the nanofibers upon incorporation of nanoparticles. Their respective average diameters are 220, 338, 181, and 250 nm for PAN, CA, PAN-TiO2, and CA-TiO2 polymer fibers, respectively. The morphology of the nanofibers improved while the diameter increased with an increase in polymer concentration. Different loadings of TiO2 nanoparticles improved the electrospinnability and morphology and further decreased the size of the nanofibers. FTIR spectroscopy signifies the formation of nanocomposites and the presence of TiO2 nanoparticles which corresponded to the Ti-O stretching and Ti-O-Ti bands on the FTIR spectra.

Funder

CSIR

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3