Relationship between Tectonism and Composition and Pore Characteristics of Shale Reservoirs

Author:

Shang Fuhua123ORCID,Zhu Yanming12ORCID,Gao Haitao12,Wang Yang12,Liu Ruiyin4

Affiliation:

1. Key Laboratory of Coalbed Methane Resource & Reservoir Formation Process, Ministry of Education, China University of Mining and Technology, Xuzhou 221008, China

2. School of Resources and Earth Science, China University of Mining and Technology, Xuzhou 221116, China

3. Department of Earth and Environmental Sciences, The University of Texas at Arlington, Arlington, TX 76019, USA

4. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China

Abstract

Tectonism is one of the major controlling factors of shale gas accumulation and enrichment in China. To explore the relationship between tectonism and composition and pore characteristics of shale reservoirs, this research carried out mineralogy tests, organic geochemistry tests, field emission scanning electron microscopy (FE-SEM) experiments, and low-pressure gas adsorption (LPGA, N2 and CO2) experiments on the shale samples of various deformation intensities from Southwestern China. Based on the FE-SEM image analyses, it can be found that there are large differences in pore characteristics in shale samples with different deformation intensities. The samples with strong deformation have more organic pores, mainly related to the clay-organic aggregates and rigid grains. Tectonism can cause organic matter (OM) and clay minerals to be mixed or OM to fill in the clay layers, resulting in the retention of some organic pores. It is the presence of pressure shadows around the rigid grains that can resist tectonic extrusion and protect some organic pores. LPGA experiment results also show that micropore-specific surface areas and pore volumes of the samples with strong deformation are larger than those with weak deformation. The shale samples with strong deformation also have more microchannels and microfractures. Tectonism can also cause some micropores to become macropores; for example, tectonism can cause the rigid grains to slide and rotate, enlarging the dissolution pores at the edges of rigid grains. Shale samples with strong deformation have a smaller mesopore volume; but due to the presence of organic-clay aggregates, a larger mesopore-specific surface area embarks on these samples. According to fractal dimension calculations, it is found that in strong deformed shale, more multiple dimensions of the pore system tend to represent rougher pore surfaces and more irregular shapes. Besides, rougher pore surfaces are eager to provide more adsorption sites and enhance the adsorption capacity of the deformed shale. This study investigates the relationship between tectonism and composition and pore characteristics of shale reservoirs and may promote understanding of the accumulation of shale gas in highly deformed areas.

Funder

China University of Mining and Technology

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3