Affiliation:
1. Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, TX 77843-3123, USA
Abstract
The first and second laws of thermodynamic were applied to statistical databases on nutrition and human growth in order to estimate the entropy generation over the human lifespan. The calculations were performed for the cases of variation in the diet composition and calorie restriction diets; and results were compared to a base case in which lifespan entropy generation was found to be 11 404 kJ/K per kg of body mass, predicting a lifespan of 73.78 and 81.61 years for the average male and female individuals respectively. From the analysis of the results, it was found that changes of diet % of fat and carbohydrates do not have a significant impact on predicted lifespan, while the diet % of proteins has an important effect. Reduction of diet protein % to the minimum recommended in nutrition literature yields an average increase of 3.3 years on the predicted lifespan. Changes in the calorie content of the diet also have an important effect, yielding a % increase in lifespan equal or higher than the % reduction in the diet caloric content. This correlates well experimental data on small mammal and insects, in which lifespan has been increased by diet restriction.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Biophysics
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献