LSTM-DGWO-Based Sentiment Analysis Framework for Analyzing Online Customer Reviews

Author:

Barik Kousik1,Misra Sanjay2ORCID,Ray Ajoy Kumar1,Bokolo Anthony3ORCID

Affiliation:

1. JIS Institute of Advanced Studies & Research, JIS University, Kolkata, India

2. Department of Computer Science and Communication, Østfold University College, Halden, Norway

3. Department of Applied Data Sciences, Institute for Energy Technology, Halden 1777, Norway

Abstract

Sentiment analysis furnishes consumer concerns regarding products, enabling product enhancement development. Existing sentiment analysis using machine learning techniques is computationally intensive and less reliable. Deep learning in sentiment analysis approaches such as long short term memory has adequately evolved, and the selection of optimal hyperparameters is a significant issue. This study combines the LSTM with differential grey wolf optimization (LSTM-DGWO) deep learning model. The app review dataset is processed using the bidirectional encoder representations from transformers (BERT) framework for efficient word embeddings. Then, review features are extracted by the genetic algorithm (GA), and the optimal review feature set is extracted using the firefly algorithm (FA). Finally, the LSTM-DGWO model categorizes app reviews, and the DGWO algorithm optimizes the hyperparameters of the LSTM model. The proposed model outperformed conventional methods with a greater accuracy of 98.89%. The findings demonstrate that sentiment analysis can be practically applied to understand the customer’s perception of enhancing products from a business perspective.

Funder

Østfold University College

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integration of Deep Learning into the IoT: A Survey of Techniques and Challenges for Real-World Applications;Electronics;2023-12-07

2. Mining Twitter for Insights into ChatGPT Sentiment: A Machine Learning Approach;2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2023-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3