Quantum Chemical Characteristics of Additives That Enable the Use of Propylene Carbonate-Based Electrolytes

Author:

Lee Jaeho1ORCID,Kim Chaewon1ORCID,Han Young-Kyu1ORCID

Affiliation:

1. Department of Energy and Materials Engineering, Dongguk University, Seoul, Republic of Korea

Abstract

Propylene carbonate- (PC-) based electrolytes are gaining attention as electrolytes in next-generation batteries because of their high stability and excellent temperature characteristics at high voltages. Lithium-ion batteries using PC-based electrolytes with 3-methyl-1,4,2-dioxazol-5-one (MDO) showed excellent capacity retention and lifetime characteristics. Here, quantum chemical methods are used to examine the molecular characteristics of MDO, and they suggest the unique molecular properties of this additive. Our calculations reveal that MDO is reduced prior to ethylene carbonate (EC) and PC solvents and undergoes a remarkably fast reduction decomposition process while producing thermodynamically stable reduction reaction products compared to vinylene carbonate (VC) and fluoroethylene carbonate (FEC) additives. This implies that a thermodynamically stable solid-electrolyte interphase (SEI) can form on the anode surface through a very rapid reaction. Upon reduction, the most preferred thermodynamic reaction between MDO and PC forms Li2CO3, a major SEI component. These reaction characteristics are unique and not observed with VC or FEC. The binding energy with Li+ is lower for MDO than for VC, FEC, or the solvents, making MDO the best choice for desolvation. We demonstrate that the molecular characteristics derived from quantum chemical calculations for MDO can also be applied to various previously reported PC-based electrolyte additives.

Funder

Supercomputing Center/KISTI

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3