The Potential Therapeutic Effects of Platelet-Derived Biomaterials on Osteoporosis: A Comprehensive Review of Current Evidence

Author:

Amiri Mohammad Amin1ORCID,Farshidfar Nima2ORCID,Miron Richard J.3,Dziedzic Arkadiusz4,Hamedani Shahram5,Daneshi Sajad2,Tayebi Lobat6

Affiliation:

1. Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran

2. Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

3. Department of Periodontology, University of Bern, Bern, Switzerland

4. Department of Conservative Dentistry with Endodontics, Medical University of Silesia, Katowice, Poland

5. Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran

6. Marquette University School of Dentistry, Milwaukee, WI 53233, USA

Abstract

Osteoporosis is a chronic multifactorial condition that affects the skeletal system, leading to the deterioration of bone microstructure and an increased risk of bone fracture. Platelet-derived biomaterials (PDBs), so-called platelet concentrates, such as platelet-rich plasma (PRP) and platelet-rich fibrin (PRF), have shown potential for improving bone healing by addressing microstructural impairment. While the administration of platelet concentrates has yielded positive results in bone regeneration, the optimal method for its administration in the clinical setting is still debatable. This comprehensive review aims to explore the systemic and local use of PRP/PRF for treating various bone defects and acute fractures in patients with osteoporosis. Furthermore, combining PRP/PRF with stem cells or osteoinductive and osteoconductive biomaterials has shown promise in restoring bone microstructural properties, treating bony defects, and improving implant osseointegration in osteoporotic animal models. Here, reviewing the results of in vitro and in vivo studies, this comprehensive evaluation provides a detailed mechanism for how platelet concentrates may support the healing process of osteoporotic bone fractures.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3