A Hybrid Model Using PCA and BP Neural Network for Time Series Prediction in Chinese Stock Market with TOPSIS Analysis

Author:

Hang Lei1ORCID,Liu Dandan1,Xie Fusheng1ORCID

Affiliation:

1. Business School, Shanghai Normal University Tianhua College, Shanghai 201815, China

Abstract

The stock price changes rapidly and is highly nonlinear in the financial market. One of the common concerns of many scholars and investors is how to accurately predict the stock price and the trend of rising and falling in a short time. Machine learning and deep learning techniques have found their place in financial institutions thanks to the ability of time series data prediction with high precision. However, the prediction accuracy of these models is still far from satisfactory. Most existing studies use original, single prediction algorithms that cannot overcome inherent limitations. This study proposes a hybrid model using principal component analysis (PCA) and backpropagation (BP) neural networks. The historical records of China Merchants Bank are used for data collection from 2015 to 2021. PCA preprocesses the original data to reduce the dimensionality and is then adopted by the BP neural network to predict the stock closing price of China Merchants Bank. We compare and analyze the PCA–BP model with three training algorithms, and the results indicate that the Bayesian regularization algorithm performs best. Besides, we perform the stock prediction using a traditional exponential smoothing approach. The experiment results show that the predicted stock closing price is close to the actual value, and the mean absolute percentage error can reach 0.0130, which is more significant than the traditional approach. Furthermore, A TOPSIS approach is utilized to evaluate the robustness of the proposed model. Finally, we demonstrate the usability of the designed hybrid model by predicting the stock price of another selected stock.

Funder

Shanghai Chenguang Plan

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3