Identifying the Symptom Severity in Obsessive-Compulsive Disorder for Classification and Prediction: An Artificial Neural Network Approach

Author:

Shahzad Mirza Naveed1ORCID,Suleman Muhammad1,Ahmed Mirza Ashfaq2ORCID,Riaz Amna1,Fatima Khadija1

Affiliation:

1. Department of Statistics, University of Gujrat, Pakistan

2. Department of Management Sciences, University of Gujrat, Pakistan

Abstract

The present study is aimed at identifying the most prominent determinants of OCD along with their strength to classify the OCD patients from healthy controls. The data for this cross-sectional study were collected from 200 diagnosed OCD patients and 400 healthy controls. The respondents were selected through purposive sampling and interviewed by using the Y-BOCS scale with the addition of a factor, worth of an individual in his family. The validity and reliability of data were assessed through Cronbach’s alpha and confirmatory factor analysis. Artificial Neural Network (ANN) modeling was adopted to determine threatening determinants along with their strength to predict OCD in an individual. The results of ANN modeling depicted 98% accurate classification of OCD patients from healthy controls. The most contributing factors in determining the OCD patients according to normalized importance were the contamination and cleaning (100%); symmetric and perfection (72.5%); worth of an individual in the family (71.1%); aggressive, religious, and sexual obsession (50.5%); high-risk assessment (46.0%); and somatic obsessions and checking (24.0%).

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology,General Medicine,Neuropsychology and Physiological Psychology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3