Asymptotic Normality of Nonparametric Kernel Regression Estimation for Missing at Random Functional Spatial Data

Author:

Alshahrani Fatimah1ORCID,Almanjahie Ibrahim M.2ORCID,Benchikh Tawfik3ORCID,Fetitah Omar3ORCID,Attouch Mohammed Kadi3ORCID

Affiliation:

1. Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. Department of Mathematics, College of Science, King Khalid University, Abha 62223, Saudi Arabia

3. Statistical and Stochastic Process Laboratory, Djillali Liabes University, Sidi Bel Abbes, Algeria

Abstract

This study investigates the estimation of the regression function using the kernel method in the presence of missing at random responses, assuming spatial dependence, and complete observation of the functional regressor. We construct the asymptotic properties of the established estimator and derive the probability convergence (with rates) as well as the asymptotic normality of the estimator under certain weak conditions. Simulation studies are then presented to examine and show the performance of our proposed estimator. This is followed by examining a real data set to illustrate the suggested estimator’s efficacy and demonstrate its superiority. The results show that the proposed estimator outperforms existing estimators as the number of missing at random data increases.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

Hindawi Limited

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3