LE-YOLOv5: A Lightweight and Efficient Road Damage Detection Algorithm Based on Improved YOLOv5

Author:

Diao Zhuo1ORCID,Huang Xianfu23,Liu Han4,Liu Zhanwei1ORCID

Affiliation:

1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

2. State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

3. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

4. Beijing Institute of Structure and Environment Engineering, Beijing 100076, China

Abstract

Road damage detection is very important for road safety and timely repair. The previous detection methods mainly rely on humans or large machines, which are costly and inefficient. Existing algorithms are computationally expensive and difficult to arrange in edge detection devices. To solve this problem, we propose a lightweight and efficient road damage detection algorithm LE-YOLOv5 based on YOLOv5. We propose a global shuffle attention module to improve the shortcomings of the SE attention module in MobileNetV3, which in turn builds a better backbone feature extraction network. It greatly reduces the parameters and GFLOPS of the model while increasing the computational speed. To construct a simple and efficient neck network, a lightweight hybrid convolution is introduced into the neck network to replace the standard convolution. Meanwhile, we introduce the lightweight coordinate attention module into the cross-stage partial network module that was designed using the one-time aggregation method. Specifically, we propose a parameter-free attentional feature fusion (PAFF) module, which significantly enhances the model’s ability to capture contextual information at a long distance by guiding and enhancing correlation learning between the channel direction and spatial direction without introducing additional parameters. The K-means clustering algorithm is used to make the anchor boxes more suitable for the dataset. Finally, we use a label smoothing algorithm to improve the generalization ability of the model. The experimental results show that the LE-YOLOv5 proposed in this document can stably and effectively detect road damage. Compared to YOLOv5s, LE-YOLOv5 reduces the parameters by 52.6% and reduces the GFLOPS by 57.0%. However, notably, the mean average precision (mAP) of our model improves by 5.3%. This means that LE-YOLOv5 is much more lightweight while still providing excellent performance. We set up visualization experiments for multialgorithm comparative detection in a variety of complex road environments. The experimental results show that LE-YOLOv5 exhibits excellent robustness and reliability in complex road environments.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

Reference43 articles.

1. Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey

2. Rich feature hierarchies for accurate object detection and semantic segmentation;R. Girshick

3. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

4. R-FCN: object detection via region-based fully convolutional networks;J. Dai;Neural Information Processing Systems,2016

5. Mask R-CNN;K. He

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3