Characteristics of Hydrogen Distribution under Steam Condensation in an Enclosed Vessel: Steady-State and Transient Tests

Author:

Park Il Woong1ORCID,Yu Jia2ORCID,Song Sang Min1ORCID,Lee Yeon-Gun23ORCID

Affiliation:

1. Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea

2. Major of Energy and Chemical Engineering, Faculty of Applied Energy System, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243, Republic of Korea

3. Department of Electrical and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243, Republic of Korea

Abstract

Although hydrogen has been recognized as a promising material for global energy transportation, its inadvertent leakage or generation into enclosed spaces may pose a risk of an explosion hazard in engineering facilities, including nuclear power plants. To manage the associated risks, it is crucial to identify the characteristics of hydrogen dispersion in air and its stratification behavior. In this study, we conducted an experimental investigation on the distribution of hydrogen in an enclosed vessel under steam-condensing conditions by using helium as a substitute for hydrogen. A series of steady-state and transient tests were carried out in a cylindrical test vessel, in which the interacting effect with steam condensation was simulated by employing a vertical condenser tube to promote the mixing of the steam-air-helium mixture. During transient tests, the impact of the jet momentum created by helium injection into the enclosure and subsequent buoyancy-driven redistribution of helium in the postinjection phase was observed.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3