Regulation of Glucolipid Metabolism in Mice Using Dendrobium huoshanense Extract and PI3k/Akt Signaling Pathway Activation

Author:

Zhang Xiaoqian12ORCID,Fang Jing12,Ge Ruipeng12,Wu Jing12,Ye Mengjuan12,Cai Xiao12,Deng Guanghui12,Ma Mengzhen12,Lv Jiahui12,Yu Nianjun1234ORCID,Yao Liang12ORCID,Peng Daiyin1234ORCID

Affiliation:

1. College of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, Anhui, China

2. Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China

3. MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, Anhui, China

4. Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, Anhui, China

Abstract

The present research is carried out to study the hypoglycemic and hypolipidemic effects of the Dendrobium huoshanense C. Z. Tang et S. J. Cheng extract on type 2 diabetic mice. D. huoshanense extract was prepared using the condensation reflux method. The chemical components were separated by UPLC Triple-TOF MS/MS to further identify the components that mainly exerted hypoglycemic and hypolipidemic effects. Type 2 diabetic C57BL/6 mice were induced by a high-fat diet (HFD) followed by intraperitoneal streptozotocin (STZ) and were daily gavaged with different doses of D. huoshanense extract for 5 weeks. Various methods such as HE staining, ELISA, and Western blot were used to evaluate the hypoglycemic and hypolipidemic effects of D. huoshanense extract on mice with type 2 diabetes mellitus model. The experimental results revealed that the main compounds of D. huoshanense extract were polysaccharides, flavonoids, alkaloids, amino acids, and many other chemical components. Oral administration of 200 mg/kg of the extract of D. huoshanense significantly reduced blood glucose and insulin levels of high-dose group mice and lowered total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels, but increased high-density lipoprotein cholesterol (HDL-C) levels and liver glycogen content. In addition, the protein expression levels of insulin receptor (Ins R), phosphatidylinositol-3 kinase (PI3K) and p-protein kinase B (Akt) were upregulated. These results imply that the D. huoshanense aqueous extract can improve insulin resistance and lipid metabolism in type 2 diabetic mice, and it may regulate the function through the PI3K/AKT pathway.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Pharmacology,Food Science,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3