Physical Background for Luminescence Thermometry Sensors Based on Pr3+:LaF3 Crystalline Particles

Author:

Pudovkin Maksim S.1ORCID,Morozov Oleg A.1,Pavlov Vitaly V.1,Korableva Stella L.1ORCID,Lukinova Elena V.1,Osin Yury N.1,Evtugyn Vladimir G.1,Safiullin Roman A.2,Semashko Vadim V.1

Affiliation:

1. Kazan Federal University, Kazan, Tatarstan 420008, Russia

2. Kazan National Research Technological University, Kazan, Tatarstan 420015, Russia

Abstract

The main goal of this study was creating multifunctional nanoparticles based on rare-earth doped LaF3 nanocrystals, which can be used as fluorescence thermal sensors operating over the 80–320 K temperature range including physiological temperature range (10–50°C). The Pr3+:LaF3 (CPr = 1%) microcrystalline powder and the Pr3+:LaF3 (CPr = 12%, 20%) nanoparticles were studied. It was proved that all the samples were capable of thermal sensing into the temperature range from 80 to 320 K. It was revealed that the mechanisms of temperature sensitivity for the microcrystalline powder and the nanoparticles are different. In the powder, the 3P1 and 3P0 states of Pr3+ ion share their electronic populations according to the Boltzmann and thermalization of the 3P1 state takes place. In the nanoparticles, two temperature dependent mechanisms were suggested: energy migration within 3P0 state in the temperature range from 80 K to 200 K followed by quenching of 3P0 state by OH groups at higher temperatures. The values of the relative sensitivities for the Pr3+:LaF3 (CPr = 1%) microcrystalline powder and the Pr3+:LaF3 (CPr = 12%, 20%) nanoparticles into the physiological temperature range (at 45°C) were 1, 0.5, and 0.3% °C−1, respectively.

Funder

Russian Government

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3