An Improved Refined Composite Multivariate Multiscale Fuzzy Entropy Method for MI-EEG Feature Extraction

Author:

Li Mingai12ORCID,Wang Ruotu1,Yang Jinfu12,Duan Lijuan1

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

2. Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China

Abstract

Feature extraction of motor imagery electroencephalogram (MI-EEG) has shown good application prospects in the field of medical health. Also, multivariate entropy-based feature extraction methods have been gradually applied to analyze complex multichannel biomedical signals, such as EEG and electromyography. Compared with traditional multivariate entropies, refined composite multivariate multiscale fuzzy entropy (RCmvMFE) overcomes the defect of unstable entropy values caused by the scale factor increase and is beneficial towards obtaining richer feature information. However, the coarse-grained process of RCmvMFE is mean filtered, which weakens Gaussian noise and is powerless against random impulse noise interference. This yields poor quality feature information and low accuracy classification. In this paper, RCmvMFE is improved (IRCmvMFE) by using composite filters in the coarse-grained procedure to enhance filter performance. Median filters are employed to remove the impulse noise interference from multichannel MI-EEG signals, and these filtered MI-EEGs are further smoothed by the mean filters. The multiscale IRCmvMFEs are calculated for all channels of composite filtered MI-EEGs, forming a feature vector, and a support vector machine is used for pattern classification. Based on two public datasets with different motor imagery tasks, the recognition results of 10 × 10-fold cross-validation achieved 99.43% and 99.86%, respectively, and the statistical analysis of experimental results was completed, showing the effectiveness of IRCmvMFE, as well. The proposed IRCmvMFE-based feature extraction method is superior compared to entropy-based and traditional methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference33 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3