Affiliation:
1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
2. Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China
Abstract
Feature extraction of motor imagery electroencephalogram (MI-EEG) has shown good application prospects in the field of medical health. Also, multivariate entropy-based feature extraction methods have been gradually applied to analyze complex multichannel biomedical signals, such as EEG and electromyography. Compared with traditional multivariate entropies, refined composite multivariate multiscale fuzzy entropy (RCmvMFE) overcomes the defect of unstable entropy values caused by the scale factor increase and is beneficial towards obtaining richer feature information. However, the coarse-grained process of RCmvMFE is mean filtered, which weakens Gaussian noise and is powerless against random impulse noise interference. This yields poor quality feature information and low accuracy classification. In this paper, RCmvMFE is improved (IRCmvMFE) by using composite filters in the coarse-grained procedure to enhance filter performance. Median filters are employed to remove the impulse noise interference from multichannel MI-EEG signals, and these filtered MI-EEGs are further smoothed by the mean filters. The multiscale IRCmvMFEs are calculated for all channels of composite filtered MI-EEGs, forming a feature vector, and a support vector machine is used for pattern classification. Based on two public datasets with different motor imagery tasks, the recognition results of 10 × 10-fold cross-validation achieved 99.43% and 99.86%, respectively, and the statistical analysis of experimental results was completed, showing the effectiveness of IRCmvMFE, as well. The proposed IRCmvMFE-based feature extraction method is superior compared to entropy-based and traditional methods.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献