Tailoring Aerogel for Thermal Spray Applications in Aero-Engines: A Screening Study

Author:

Bheekhun Nadiir1ORCID,Abu Talib Abd Rahim2ORCID,Hassan Mohd Roshdi3ORCID

Affiliation:

1. Aerospace and Communication Technology Research Group, Department of Engineering and Technology, Faculty of Information Sciences and Engineering, Management & Science University, University Drive, Seksyen13, 40100 Shah Alam, Selangor Darul Ehsan, Malaysia

2. Aerodynamics, Heat Transfer and Propulsion Research Group, Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

3. Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

Abstract

Irregular silica aerogel particles had been tailored to a regular spherical shape within the proper granulometric size range for thermal spraying. Silica aerogel is an ultralow dense and highly porous nanomaterial with its thermal conductivity being the lowest than any solids. Although silica aerogels possess fascinating physical properties, their implementation is limited to aerogel-doped blankets in the aerospace industry. Due to space constraints, these heat insulative and fireproof blankets are not encouraged by aero-engine manufacturers, and hence, alternatives are being sought. Although it was thought that an aerogel-based thermally sprayed coating may be applicable, aerogel powders are extremely challenging to be injected and deposited by thermal spray guns because of their inappropriate granulometric and morphological properties. Consequently, this study intends to tailor the aerogel powders accordingly. Aerogel-based slurries with yttria-stabilized zirconia as a secondary ceramic were prepared and spray-dried according to a modified Taguchi experimental design in order to appreciate the effect of both the slurry formulation and drying conditions such as the solid content, the ratio of yttria-stabilized zirconia : aerogel added, the amount of dispersant and binder, inlet temperature, atomization pressure, and feeding rate on the aforementioned characteristics of the resulting spray-dried powder. Uniformity was found to be the most influenced one (F-ratio = 62.40) by the overall spray-drying process. Solid content had the most significant effect on median particle size (p value = 0.035) and volume fraction (p value = 0.010) but did not affect uniformity significantly (p value = 0.065). Furthermore, a strong positive and significant correlation existed (Pearson’s r = 0.930) between median particle size and volume fraction. Based on the derived relationships, an optimised condition to achieve the maximum median particle size was then predicted and verified experimentally. The optimised aerogel-based spray-dried powder had a median particle size, volume fraction, and uniformity of 28.93 ± 0.726 μm, 64.45 ± 0.535, and 0.475 ± 0.002, respectively. Finally, the morphology of the optimised powder was noticed to have been changed from irregular shapes to spherical or donut-like granules which made them within the frame of thermally sprayable. However, when the optimised spray-dried powder was weighed, the quantity was found to be 10% only from the total weight of ceramics within the slurry prior to spray-drying, which makes it uneconomically reasonable for subsequent thermal spraying.

Funder

Fundamental Research Grant Schemes

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3