Influence of Beam-to-Column Linear Stiffness Ratio on Failure Mechanism of Reinforced Concrete Moment-Resisting Frame Structures

Author:

Su Jizhi1,Liu Boquan1ORCID,Xing Guohua1ORCID,Ma Yudong1,Huang Jiao1

Affiliation:

1. School of Civil Engineering, Chang’an University, Xi’an 710061, China

Abstract

The design philosophy of a strong-column weak-beam (SCWB), commonly used in seismic design codes for reinforced concrete (RC) moment-resisting frame structures, permits plastic deformation in beams while keeping columns elastic. SCWB frames are designed according to beam-to-column flexural capacity ratio requirements in order to ensure the beam-hinge mechanism during large earthquakes and without considering the influence of the beam-to-column stiffness ratio on the failure modes of global structures. The beam-to-column linear stiffness ratio is a comprehensive indicator of flexural stiffness, story height, and span. This study proposes limit values for different aseismic grades based on a governing equation deduced from the perspective of member ductility. The mathematical expression shows that the structural yielding mechanism strongly depends on parameters such as material strength, section size, reinforcement ratio, and axial compression ratio. The beam-hinge mechanism can be achieved if the actual beam-to-column linear stiffness ratio is smaller than the recommended limit values. Two 1/3-scale models of 3-bay, 3-story RC frames were constructed and tested under low reversed cyclic loading to verify the theoretical analysis and investigate the influence of the beam-to-column linear stiffness ratio on the structural failure patterns. A series of nonlinear dynamic analyses were conducted on the numerical models, both nonconforming and conforming to the beam-to-column linear stiffness ratio limit values. The test results indicated that seismic damage tends to occur at the columns in structures with larger beam-to-column linear stiffness ratios, which inhibits the energy dissipation. The dynamic analysis suggests that considering the beam-to-column linear stiffness ratio during the design of structures leads to a transition from a column-hinge mechanism to a beam-hinge mechanism.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3