Adaptive Fractional-Order Operator Clock Synchronization Algorithm Based on Grey Prediction

Author:

Yang Hongwei1,Wang Long1,Zhang Jing1,Li Li1ORCID

Affiliation:

1. College of Computer Science and Technology, Chang Chun University of Science and Technology, Changchun 130022, China

Abstract

As a result of the influence of clock drift and uncertainty delay in synchronous message transmission, the clock synchronization model based on statistical distribution cannot accurately describe clock deviation. This model also requires a large number of timestamp samples that cause a storage occupation issue for wireless sensor nodes with limited resources. The modeling method based on grey prediction has advantages of low sample demand and simple modeling process. However, the accuracy of the existing clock synchronization models needs to be improved. Based on the grey prediction theory, this paper proposes an adaptive fractional-order operator clock synchronization algorithm considering uncertainty delay. First, based on the clock model and clock offset model, the frequency offset between nodes is optimized by taking the mean on the clock frequencies. Second, a grey prediction algorithm based on a fractional-order operator is proposed by estimating the uncertainty delay in message transmission to obtain the clock offset. Finally, the order of the fractional-order accumulation is adjusted adaptively in the grey prediction model according to the collected timestamp sample values so that the estimation of the uncertainty delay is more accurate, thereby improving the accuracy of the clock offset. Compared with the first-order accumulative grey prediction clock synchronization algorithms and timing-sync protocol for sensor networks, the proposed scheme improved the synchronization accuracy by 29.18% and 44.01%, respectively, and reduced the variance of the clock offset by 48.66% and 64.89%. Thus, the proposed algorithm is characterized by improved stability.

Funder

Education Department of Jilin Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3