A Recommendation Approach Based on Heterogeneous Network and Dynamic Knowledge Graph

Author:

Wan Shanshan12ORCID,Wu Yuquan1ORCID,Liu Ying3ORCID,Xiao Linhu4ORCID,Guo Maozu12ORCID

Affiliation:

1. School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

2. Beijing Key Laboratory of Intelligent Processing for Building Big Data, Beijing 102616, China

3. People’s Bank of China, Lanzhou, Gansu 730000, China

4. Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China

Abstract

Besides data sparsity and cold start, recommender systems often face the problems of selection bias and exposure bias. These problems influence the accuracy of recommendations and easily lead to overrecommendations. This paper proposes a recommendation approach based on heterogeneous network and dynamic knowledge graph (HN-DKG). The main steps include (1) determining the implicit preferences of users according to user’s cross-domain and cross-platform behaviors to form multimodal nodes and then building a heterogeneous knowledge graph; (2) Applying an improved multihead attention mechanism of the graph attention network (GAT) to realize the relationship enhancement of multimodal nodes and constructing a dynamic knowledge graph; and (3) Leveraging RippleNet to discover user’s layered potential interests and rating candidate items. In which, some mechanisms, such as user seed clusters, propagation blocking, and random seed mechanisms, are designed to obtain more accurate and diverse recommendations. In this paper, the public datasets are used to evaluate the performance of algorithms, and the experimental results show that the proposed method has good performance in the effectiveness and diversity of recommendations. On the MovieLens-1M dataset, the proposed model is 18%, 9%, and 2% higher than KGAT on F1, NDCG@10, and AUC and 20%, 2%, and 0.9% higher than RippleNet, respectively. On the Amazon Book dataset, the proposed model is 12%, 3%, and 2.5% higher than NFM on F1, NDCG@10, and AUC and 0.8%, 2.3%, and 0.35% higher than RippleNet, respectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3