S100A1: A Regulator of Striated Muscle Sarcoplasmic Reticulum Ca2+Handling, Sarcomeric, and Mitochondrial Function

Author:

Völkers Mirko1,Rohde David1,Goodman Chelain2,Most Patrick2

Affiliation:

1. Division of Cardiology, Department of Internal Medicine III, Laboratory for Molecular and Translational Cardiology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany

2. Department of Medicine, Center for Translational Medicine, Laboratory for Cardiac Stem Cell and Gene Therapy, Thomas Jefferson University, Philadelphia, PA 19107, USA

Abstract

Calcium (Ca2+) signaling plays a key role in a wide range of physiological functions including control of cardiac and skeletal muscle performance. To assure a precise coordination of both temporally and spatially transduction of intracellularCa2+oscillations to downstream signaling networks and target operations,Ca2+cycling regulation in muscle tissue is conducted by a plethora of diverse molecules.Ca2+S100A1 is a member of theCa2+-binding S100 protein family and represents the most abundant S100 isoform in cardiac and skeletal muscle. Early studies revealed distinct expression patterns of S100A1 in healthy and diseased cardiac tissue from animal models and humans. Further elaborate investigations uncovered S100A1 protein as a basic requirement for striated muscleCa2+handling integrity. S100A1 is a critical regulator of cardiomyocyteCa2+cycling and contractile performance. S100A1-mediated inotropy unfolds independent and on top ofβAR-stimulated contractility with unchangedβAR downstream signaling. S100A1 has further been detected at different sites within the cardiac sarcomere indicating potential roles in myofilament function. More recently, a study reported a mitochondrial location of S100A1 in cardiomyocytes. Additionally, normalizing the level of S100A1 protein by means of viral cardiac gene transfer in animal heart failure models resulted in a disrupted progression towards cardiac failure and enhanced survival. This brief review is confined to the physiological and pathophysiological relevance of S100A1 in cardiac and skeletal muscleCa2+handling with a particular focus on its potential as a molecular target for future therapeutic interventions.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Genetics,Molecular Biology,Molecular Medicine,General Medicine,Biotechnology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3