Affiliation:
1. Institute of Mathematics, Poznań University of Technology, Piotrowo 3a, 60-965 Poznań, Poland
2. Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, USA
Abstract
The paper is devoted to investigation of new Lebesgue's type differentiation theorems (LDT) in rearrangement invariant (r.i.) quasi-Banach spacesEand in particular on Lorentz spacesΓp,w={f:∫(f**)pw<∞}for any0<p<∞and a nonnegative locally integrable weight functionw, wheref**is a maximal function of the decreasing rearrangementf*for any measurable functionfon(0,α), with0<α≤∞. The first type of LDT in the spirit of Stein (1970), characterizes the convergence of quasinorm averages off∈E, whereEis an order continuous r.i. quasi-Banach space. The second type of LDT establishes conditions for pointwise convergence of the best or extended best constant approximantsfϵoff∈Γp,worf∈Γp-1,w,1<p<∞, respectively. In the last section it is shown that the extended best constant approximant operator assumes a unique constant value for any functionf∈Γp-1,w,1<p<∞.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献