Identifying G6PC3 as a Potential Key Molecule in Hypoxic Glucose Metabolism of Glioblastoma Derived from the Depiction of 18F-Fluoromisonidazole and 18F-Fluorodeoxyglucose Positron Emission Tomography

Author:

Okamoto Michinari1ORCID,Yamaguchi Shigeru1ORCID,Sawaya Ryosuke1,Echizenya Sumire1,Ishi Yukitomo1,Kaneko Sadahiro1,Motegi Hiroaki1,Toyonaga Takuya2,Hirata Kenji2,Fujimura Miki1

Affiliation:

1. Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan

2. Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan

Abstract

Purpose. Glioblastoma is the most aggressive primary brain tumor, characterized by its distinctive intratumoral hypoxia. Sequential preoperative examinations using fluorine-18-fluoromisonidazole (18F-FMISO) and fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) could depict the degree of glucose metabolism with hypoxic condition. However, molecular mechanism of glucose metabolism under hypoxia in glioblastoma has been unclear. The aim of this study was to identify the key molecules of hypoxic glucose metabolism. Methods. Using surgically obtained specimens, gene expressions associated with glucose metabolism were analyzed in patients with glioblastoma (n=33) who underwent preoperative 18F-FMISO and 18F-FDG PET to identify affected molecules according to hypoxic condition. Tumor in vivo metabolic activities were semiquantitatively evaluated by lesion-normal tissue ratio (LNR). Protein expression was confirmed by immunofluorescence staining. To evaluate prognostic value, relationship between gene expression and overall survival was explored in another independent nonoverlapping clinical cohort (n=17) and validated by The Cancer Genome Atlas (TCGA) database (n=167). Results. Among the genes involving glucose metabolic pathway, mRNA expression of glucose-6-phosphatase 3 (G6PC3) correlated with 18F-FDG LNR (P=0.03). In addition, G6PC3 mRNA expression in 18F-FMISO high-accumulated glioblastomas was significantly higher than that in 18F-FMISO low-accumulated glioblastomas (P<0.01). Protein expression of G6PC3 was consistent with mRNA expression, which was confirmed by immunofluorescence analysis. These findings indicated that the G6PC3 expression might be facilitated by hypoxic condition in glioblastomas. Next, we investigated the clinical relevance of G6PC3 in terms of prognosis. Among the glioblastoma patients who received gross total resection, mRNA expressions of G6PC3 in the patients with poor prognosis (less than 1-year survival) were significantly higher than that in the patients who survive more than 3 years. Moreover, high mRNA expression of G6PC3 was associated with poor overall survival in glioblastoma, as validated by TCGA database. Conclusion. G6PC3 was affluently expressed in glioblastoma tissues with coincidentally high 18F-FDG and 18F-FMISO accumulation. Further, it might work as a prognostic biomarker of glioblastoma. Therefore, G6PC3 is a potential key molecule of glucose metabolism under hypoxia in glioblastoma.

Funder

Japan Society for the Promotion of Science

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3