Affiliation:
1. College of Computer and Information, Hohai University, Nanjing, Jiangsu 210098, China
2. College of Mathematics and Information, Chuzhou University, Chuzhou, Anhui 239000, China
Abstract
Particle swarm optimization algorithm (PSO) is a global stochastic tool, which has ability to search the global optima. However, PSO algorithm is easily trapped into local optima with low accuracy in convergence. In this paper, in order to overcome the shortcoming of PSO algorithm, an improved particle swarm optimization algorithm (IPSO), based on two forms of exponential inertia weight and two types of centroids, is proposed. By means of comparing the optimization ability of IPSO algorithm with BPSO, EPSO, CPSO, and ACL-PSO algorithms, experimental results show that the proposed IPSO algorithm is more efficient; it also outperforms other four baseline PSO algorithms in accuracy.
Funder
Natural Science Foundation of Jiangsu
Subject
General Engineering,General Mathematics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献