Radial Basis Function Surrogate Model-Based Optimization of Small Light-Weight Lead-Bismuth Reactor Core

Author:

Liu Zijing1ORCID,Li Qiong1ORCID,Zhao Pengcheng1ORCID,Wang Weijia1ORCID,Yu Tao1ORCID

Affiliation:

1. School of Nuclear Science and Technology, University of South China, Hengyang 421001, China

Abstract

Owing to their high miniaturization potential and strong natural circulation capability, lead-bismuth reactors have been widely employed for nuclear energy utilization as well as military and civilian applications. However, there is a need to optimize the design of these reactors. To solve the complex high-dimensional nonlinear single-/multiobjective optimization problem of lead-bismuth reactors, we proposed a single-/multiobjective optimization method (termed as RBF-OLHS-NGA/NSGA II method) for optimizing the reactor core, which is based on the radial basis function (RBF) surrogate model (for prediction), orthogonal Latin hypercube sampling, niche genetic algorithm (for single-objective optimization), and nondominated sorting genetic algorithm (for multiobjective optimization). In view of this approach, the design optimization procedure of the lead-bismuth reactor based on RBF (DOPPLER-R) was developed, which combined the reactor Monte Carlo (RMC) code and the steady-state thermo-hydraulic analysis calculation (STAC) code to sample, predict, and optimize reactor core parameters. Furthermore, the single-/multiobjective optimization approach was verified by considering the core fuel loading and active zone volume of SPALLER-4 as the optimization objectives. The results show that the RBF surrogate model can accurately and rapidly predict the core characteristic parameters of lead-bismuth reactors. When compared to the value calculated using the RMC code, the relative error associated with the predicted effective multiplication factor ( k e f f ) is within ±0.1%. Compared to the unoptimized values, the single-objective optimized fuel loading reduced by 400 kg, multiobjective optimized fuel loading decreased by 455–493 kg (optimization ratio of 78%–84%), and active zone volume reduced by 166362–182888 cm3 (optimization ratio of 72%–79%). These results prove that the proposed optimization method is feasible, exhibits high efficacy, and can provide new technical ideas for single-/multiobjective optimization of multiphysics, multivariable, and multiconstraint lead-bismuth reactors.

Funder

Postgraduate Scientific Research Innovation Project of Hunan Province

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3