Seismic Performance of Damaged Dovetail Joints with Different Damaged Degrees in Timber Frames

Author:

Ma Hua1ORCID,Luan Xinyu1ORCID,Li Zhenbao1ORCID,Cui Haijian1,Wang Wenjing1234,Song Jia5

Affiliation:

1. The Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China

2. China State Construction Development Co.,, Ltd., Beijing 100037, China

3. China Construction Science & Technology Co.,, Ltd., Beijing 100070, China

4. China State Construction Engineering Corporation (CSCEC), Beijing 100029, China

5. China Construction Prefabricated Building Design & Research Institute Co.,, Ltd., Beijing 100070, China

Abstract

The mortise and tenon joints are the main connection forms used in ancient timber buildings, and damaged joints have a critical effect on the safety of a timber structure. There are three main damaged cases of dovetail joints which are pulling, contraction, and mixing damages. In this study, using a theoretical analysis of the stress distribution in a mortise and tenon joint resulted from the pullout damage, a theoretical equation for the resisting moment of the joint was proposed. A finite element model was used to simulate the cyclic displacement loading of a frame with intact joints and with different levels of pulling and contraction damaged joints. The results show that the moment capacities both for the test and the simulation were in good agreement with each other. The simulation results also indicated that there are no changes in the capacity and energy dissipation of the pulling damaged joint compared to that of the intact joint, and good seismic performance still was provided when the pulling damage was less than 2/5 of the joint length. However, the capacity of the contraction damaged joint was significantly reduced, and its seismic performance was tolerably lost. The seismic performance of a mixing damaged tenon with the same degree of pulling damage was between that of the pulling damaged tenon and the contraction damaged tenon, and generally, it was controlled by the contraction damage. The friction between the tenon and the mortise is the main source of resisting moment and energy dissipation ability.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3