Effect of Fluoride-Modified Titanium Surface on Early Adhesion of Irradiated Osteoblasts

Author:

Li Jun Yuan1,Zheng Li Wu2,Ma Li1,Kwong Dora Lai Wan3,Cheung Lim Kwong4,Pow Edmond Ho Nang1

Affiliation:

1. Oral Rehabilitation, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong

2. Oral Diagnosis and Polyclinics, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong

3. Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong

4. Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong

Abstract

Objective. The present study aimed to investigate the effect of fluoride-modified titanium surface on adhesion of irradiated osteoblasts.Materials and Methods. Fluoride-modified surface was obtained and the morphology, roughness, and chemical composition of the surface were evaluated by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy, respectively. The adhesion of irradiated osteoblast-like cells, in terms of number, area, and fluorescence intensity on the titanium surface, was evaluated using immunofluorescence staining.Results. Numerous nanosize pits were seen only in the F-TiO surface. The pits were more remarkable and uniform on F-TiO surface than on TiO surface; however, the amplitude of peaks and bottoms on F-TiO surface appeared to be smaller than on TiO surface. The Sa value and Sdr percentage of TiO surfaces were significantly higher than those of F-TiO surface. The concentrations of main elements such as titanium, oxygen, and carbon were similar on both surfaces. The number of irradiated osteoblasts adhered on the control surface was larger than on fluoride-modified surface. Meanwhile, the cells on the fluoride-modified surface formed more actin filaments.Conclusions. The fluoride-modified titanium surface alters the adhesion of irradiated osteoblasts. Further studies are needed to investigate the proliferation, differentiation, maturation, gene expression, and cytokine production of irradiated osteoblasts on fluoride-modified titanium surface.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3