A Fast Color Image Segmentation Approach Using GDF with Improved Region-Level Ncut

Author:

Li Ying1ORCID,Wang Shuliang2ORCID,Li Caoyuan2,Pan Zhenkuan1,Zhang Weizhong1

Affiliation:

1. College of Computer Science and Technology, Qingdao University, Qingdao 266071, China

2. School of Software, Beijing Institute of Technology, Beijing 100081, China

Abstract

Color image segmentation is fundamental in image processing and computer vision. A novel approach, GDF-Ncut, is proposed to segment color images by integrating generalized data field (GDF) and improved normalized cuts (Ncut). To start with, the hierarchy-grid structure is constructed in the color feature space of an image in an attempt to reduce the time complexity but preserve the quality of image segmentation. Then a fast hierarchy-grid clustering is performed under GDF potential estimation and therefore image pixels are merged into disjoint oversegmented but meaningful initial regions. Finally, these regions are presented as a weighted undirected graph, upon which Ncut algorithm merges homogenous initial regions to achieve final image segmentation. The use of the fast clustering improves the effectiveness of Ncut because regions-based graph is constructed instead of pixel-based graph. Meanwhile, during the processes of Ncut matrix computation, oversegmented regions are grouped into homogeneous parts for greatly ameliorating the intermediate problems from GDF and accordingly decreasing the sensitivity to noise. Experimental results on a variety of color images demonstrate that the proposed method significantly reduces the time complexity while partitioning image into meaningful and physically connected regions. The method is potentially beneficial to serve object extraction and pattern recognition.

Funder

Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3