Affiliation:
1. Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
2. Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
Abstract
During the production cycle of poultry farms, pathogens may remain in the next cycle of rearing young chickens. This study was conducted at three industrial chicken farms (A, B, and C) in central Thailand. Results showed that the percentages of E. coli during the resting period in farms A, B, and C were 28.6, 53.8, and 7.8, respectively, and those during the growing period were 45, 68.8, and 75. The most common resistant patterns during the resting period in all farms were AML-AMP-SXT and AML-AMP-DO-SXT, and those during the growing period were AML-AMP and AML-AMP-SXT. The locations of blaTEM-positive E. coli isolates from the inside houses (inside buildings) of all farms included cloacal swabs, floors, water nipples, pan feeders, and husks, whereas that from the outside environment included boots, wastewater, soil, and water from cooling pads and tanks. Our results indicate that the percentage of antimicrobial resistance (AMR) and its pattern depend on the husbandry period and the strictness of biosecurity. Moreover, our findings derived from samples gathered from broiler farms between 2013 and 2015 align with those of the current studies, highlighting persistent trends in E. coli resistance to various antimicrobial agents. Therefore, enhancing biosecurity measures throughout both the resting and growing periods is crucial, with a specific focus on managing raw materials, bedding, breeding equipment, and staff hygiene to reduce the transmission of antimicrobial resistance in poultry farms.
Funder
Faculty of Veterinary Medicine, Kasetsart University