Safety Risk Evaluation of Large and Complex Bridges during Construction Based on the Delphi-Improved FAHP-Factor Analysis Method

Author:

Ji Teng1,Liu Ji-Wei1,Li Qing-Fu2ORCID

Affiliation:

1. Powerchina Roadbridge Group Co., Ltd., Beijing 100048, China

2. School of Water Conservancy Engineering Zhengzhou University, Zhengzhou 450001, China

Abstract

With the increase in construction scale and difficulty of large and complex bridges in China, it has become increasingly difficult to assess the safety risks of bridges during the construction period. Therefore, how to reasonably assess the safety risk of large, complex bridges during construction has become particularly important. Existing assessment methods are subjective in assigning weights, and it is difficult to select representative important factors to focus on for the prevention and control of numerous risk sources; they do not comprehensively consider the correlation of various risk sources during the construction period. To address the above shortcomings, a safety risk assessment of large and complex bridges during the construction period based on the Delphi-improved fuzzy analytic hierarchy process (FAHP) factor analysis method is proposed in this paper. First, the Delphi method was used to conduct a general survey of safety risk factors during the bridge construction period, and then the work breakdown structure-risk substructure (WBS-RBS) was used to establish the evaluation index system. Second, the improved FAHP was combined with it to calculate the weight of each risk factor. Finally, the factor analysis method was used to determine the correlation degree of each risk factor, and representative factors were selected to express the risk degree of the object to be evaluated to screen out major risk factors in the construction process. Finally, the feasibility and practicality of the method are verified by combining an actual engineering case with AHP (analytic hierarchy process) to perform a comparative study, which provides a reference basis for subsequent bridge construction risk prevention.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference34 articles.

1. Model for the Physical Risk Assessment of Bridges with Unknown Foundation

2. Research on risk assessment of bridge design based on AHP-FCE model;Y. Q. Xiang;China Civil Engineering Journal,2010

3. Risk Assessment in Bridge Construction Projects in Iran Using Monte Carlo Simulation Technique

4. Bridge construction risk identification and assessment analysis based on analytic hierarchy process;J. X. Xu;Mining Engineering Research,2020

5. Construction Safety Risk Assessment of Bridges in the Marine Environment Based on CRITIC and TOPSIS Models

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3