Effects of High Shearing Rates on the Shear Behavior of Saturated Loess Using Ring Shear Tests

Author:

Ma Jianquan12ORCID,Zhao Xiaojie1,Li Shibo1ORCID,Duan Zhao1ORCID

Affiliation:

1. College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China

2. Key Laboratory of the Northern Qinghai–Tibet Plateau Geological Processes and Mineral Resources, Qinghai Geological Survey Institute, Xining 810012, China

Abstract

The shear behavior of saturated loess was examined by performing a series of ring shear tests with different shearing rates. The effects of shearing rates on the shear behavior of saturated loess with different normal stress are presented and discussed. The results showed that peak shear strength and steady-state shear strength were greater when the shearing rate was low and vice versa. Compared with high and low shearing rates, the maximum strength reduction ratios of peak shear strength and steady-state shear strength were 34.2% and 37.2%, respectively. The axial displacement during shearing was measured and was found to increase with increasing shear displacement in all tests. A comparison of sample height reduction (when the shear rate was stopped) found that the low shearing rate test sample underwent a much greater reduction than the high shearing rate test sample; however, the variation reduction range was within 4 mm. Monitoring the pore-water pressure during the shearing process revealed that it increased with shear displacement, and a higher excess pore-water pressure was generated within the shear zone during the fast-shearing process. Comparing the particle size distribution of the samples after the test and the original sample showed that the particles were crushed during the shearing process. The percentage that was finer than 0.005 mm increased with shearing rates and normal stress, and the soil structure implosion became more pronounced with increasing normal stress.

Funder

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3