Affiliation:
1. School of Mathematics, Southeast University, Nanjing 211189, China
Abstract
Sepsis is an organ failure disease caused by an infection resulting in extremely high mortality. Machine learning algorithms XGBoost and LightGBM are applied to construct two processing methods: mean processing method and feature generation method, aiming to predict early sepsis 6 hours in advance. The feature generation methods are constructed by combining different features, including statistical strength features, window features, and medical features. Miceforest multiple interpolation method is applied to tackle large missing data problems. Results show that the feature generation method outperforms the mean processing method. XGBoost and LightGBM algorithms are both excellent in prediction performance (AUC: 0.910∼0.979), among which LightGBM boasts a faster running speed and is stronger in generalization ability especially on multidimensional data, with AUC reaching 0.979 in the feature generation method. PTT, WBC, and platelets are the key risk factors to predict early sepsis.
Funder
Fundamental Research Funds for the Central Universities
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献