Minireview on the Relations between Gut Microflora and Parkinson’s Disease: Further Biochemical (Oxidative Stress), Inflammatory, and Neurological Particularities

Author:

Ilie Ovidiu-Dumitru1,Ciobica Alin1ORCID,McKenna Jack2,Doroftei Bogdan34,Mavroudis Ioannis25

Affiliation:

1. Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no. 11, 700505 Iasi, Romania

2. Leeds Teaching Hospitals NHS Trust, Great George St., Leeds LS1 3EX, UK

3. Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no. 16, 700115 Iasi, Romania

4. Origyn Fertility Center, Palace Street, no. 3C, 700032 Iasi, Romania

5. Laboratory of Neuropathology and Electron Microscopy, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece

Abstract

The aetiology of Parkinson’s disease (PD) is a highly debated topic. Despite the progressive increase in the number of patients diagnosed with PD over the last couple of decades, the causes remain largely unknown. This report is aimed at highlighting the main features of the microbial communities which have been termed “the second brain” that may be a major participant in the etiopathophysiology of PD. It is possible that dysbiosis could be caused by an overactivity of proinflammatory cytokines which act on the gastrointestinal tract as well as infections. The majority of patients who are diagnosed with PD display gastrointestinal symptoms as one of the earliest features. In addition, an unbalanced cycle of oxidative stress caused by dysbacteriosis may have the effect of gradually promoting PD’s specific phenotype. Thus, it seems that bacteria possess the ability to manipulate the brain by initiating specific responses, defining their capability to configure the human body, with oxidative stress playing a pivotal role in preventing infections but also in activating related signalling pathways.

Funder

Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3