A Novel Radial Basis Neural Network-Leveraged Fast Training Method for Identifying Organs in MR Images

Author:

Xu Min123ORCID,Qian Pengjiang34ORCID,Zheng Jiamin4,Ge Hongwei2ORCID,Muzic Raymond F.5

Affiliation:

1. School of Internet of Things Technology, Wuxi Institute of Technology, Wuxi 214121, China

2. School of Internet of Things, Jiangnan University, Wuxi 214122, China

3. Jiangsu Key Lab of Media Design and Software Technology, Jiangnan University, Wuxi 214122, China

4. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China

5. Department of Radiology and Case Center for Imaging Research, University Hospitals, Case Western Reserve University, Cleveland, OH 44106, USA

Abstract

We propose a new method for fast organ classification and segmentation of abdominal magnetic resonance (MR) images. Magnetic resonance imaging (MRI) is a new type of high-tech imaging examination fashion in recent years. Recognition of specific target areas (organs) based on MR images is one of the key issues in computer-aided diagnosis of medical images. Artificial neural network technology has made significant progress in image processing based on the multimodal MR attributes of each pixel in MR images. However, with the generation of large-scale data, there are few studies on the rapid processing of large-scale MRI data. To address this deficiency, we present a fast radial basis function artificial neural network (Fast-RBF) algorithm. The importance of our efforts is as follows: (1) The proposed algorithm achieves fast processing of large-scale image data by introducing the ε-insensitive loss function, the structural risk term, and the core-set principle. We apply this algorithm to the identification of specific target areas in MR images. (2) For each abdominal MRI case, we use four MR sequences (fat, water, in-phase (IP), and opposed-phase (OP)) and the position coordinates (x, y) of each pixel as the input of the algorithm. We use three classifiers to identify the liver and kidneys in the MR images. Experiments show that the proposed method achieves a higher precision in the recognition of specific regions of medical images and has better adaptability in the case of large-scale datasets than the traditional RBF algorithm.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3