Affiliation:
1. School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454003, Henan, China
Abstract
In this paper we propose a fuzzy co-clustering algorithm via modularity maximization, named MMFCC. In its objective function, we use the modularity measure as the criterion for co-clustering object-feature matrices. After converting into a constrained optimization problem, it is solved by an iterative alternative optimization procedure via modularity maximization. This algorithm offers some advantages such as directly producing a block diagonal matrix and interpretable description of resulting co-clusters, automatically determining the appropriate number of final co-clusters. The experimental studies on several benchmark datasets demonstrate that this algorithm can yield higher quality co-clusters than such competitors as some fuzzy co-clustering algorithms and crisp block-diagonal co-clustering algorithms, in terms of accuracy.
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献