Thyroid-Disrupting Activities of Groundwater from a Riverbank Filtration System in Wuchang City, China: Seasonal Distribution and Human Health Risk Assessment

Author:

Kong Dongdong1,Liu Hedan1,Liu Yun2,Wang Yafei1,Li Jian1ORCID

Affiliation:

1. Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China

2. South China Institute of Environmental Science, MEE, No. 7 West Street, Yuancun, Guangzhou 510655, China

Abstract

The recombinant thyroid hormone receptor (TR) gene yeast assay was used to evaluate thyroid disruption caused by groundwater from the riverbank filtration (RBF) system in Wuchang City, China. To investigate seasonal fluctuations, groundwater was collected during three seasons. Although no TR agonistic activity was found, many water samples exhibited TR antagonistic activity. The bioassay-derived amiodarone hydrochloride (AH) equivalents ranged from 2.99 to 274.40 μg/L. Water samples collected from the riverbank filtration system during the dry season had higher TR antagonistic activity. All samples presented adverse 3,3′,5-triiodo-L-thyronine (T3) equivalent levels, ranging from −2.00 to −2.12 μg/kg. Following exposure to water samples with substantial TR antagonist activity, predicted hormonal changes in humans of different gender and age ranged from 0.65 to 1.48 μg/kg of T3, being 47% to 231% of normal. No obvious difference was found between genders or among age groups. Overall, the results revealed that the RBF system could remove the thyroid-disrupting chemicals in the river water to some extent. Considering the varying degrees of risk to human health, further treatment is needed to remove the potential thyroid-disrupting chemicals in pumping water after riverbank filtration to ensure drinking water safety.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Groundwater quality;Water Environment Research;2020-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3