Serum Lipidomics Profiling to Identify Biomarkers for Non-Small Cell Lung Cancer

Author:

Chen Yingrong1ORCID,Ma Zhihong1,Shen Xiongrong2,Li Liqin1,Zhong Jing1,Min Li Shan1,Xu Limin1,Li Hongwei3,Zhang Jianbin3,Dai Licheng1ORCID

Affiliation:

1. Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China

2. Departments of Clinical Pharmacology, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China

3. Cardiothoracic Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China

Abstract

Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide, which ranks top in both incidence and mortality. To broaden our understanding of the lipid metabolic alterations in NSCLC and to identify potential biomarkers for early diagnosis, we performed nontargeted lipidomics analysis in serum from 66 early-stage NSCLC, 40 lung benign disease patients (LBD), and 40 healthy controls (HC) using Ultrahigh Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UHPLC-Q-TOF/MS). The identified biomarker candidates of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) were further externally validated in a cohort including 30 early-stage NSCLC, 30 LBD, and 30 HC by a targeted lipidomic analysis. We observed a significantly altered lipid metabolic profile in early-stage NSCLC and identified panels of PCs and PEs to distinguish NSCLC patients and HC. The levels of PCs and PEs were found to be dysregulated in glycerophospholipid metabolism, which was the top altered pathway in early-stage NSCLC. Receiver operating characteristic (ROC) curve analysis revealed that panels of PCs and PEs exhibited good performance in differentiating early-stage NSCLC and HC. The levels of PE(16:0/16:1), PE(16:0/18:3), PE(16:0/18:2), PE(18:0/16:0), PE(17:0/18:2), PE(18:0/17:1), PE(17:0/18:1), PE(20:5/16:0), PE(18:0/18:1), PE(18:1/20:4), PE(18:0/20:3), PC(15:0/18:1), PC(16:1/20:5), and PC(18:0/20:1) in early-stage NSCLC were significantly increased compared with HC (p<0.05). Overall, our study has thus highlighted the power of using comprehensive lipidomic approaches to identify biomarkers and underlying mechanisms in NSCLC.

Funder

Public Welfare Technology Research Social Development Project of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3