Confidentiality-Preserving Publicly Verifiable Computation Schemes for Polynomial Evaluation and Matrix-Vector Multiplication

Author:

Sun Jiameng1ORCID,Zhu Binrui1,Qin Jing12ORCID,Hu Jiankun3ORCID,Ma Jixin4

Affiliation:

1. School of Mathematics, Shandong University, Jinan, Shandong 250100, China

2. State Key Laboratory of Information Security Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

3. School of Engineering and Information Technology, University of New South Wales Defence Force Academy, Canberra, Australia

4. Centre for Computer and Computational Science, School of Computing and Mathematical Sciences, University of Greenwich, London, UK

Abstract

With the development of cloud services, outsourcing computation tasks to a commercial cloud server has drawn attention of various communities, especially in the Big Data era. Public verifiability offers a flexible functionality in real circumstance where the cloud service provider (CSP) may be untrusted or some malicious users may slander the CSP on purpose. However, sometimes the computational result is sensitive and is supposed to remain undisclosed in the public verification phase, while existing works on publicly verifiable computation (PVC) fail to achieve this requirement. In this paper, we highlight the property of result confidentiality in publicly verifiable computation and present confidentiality-preserving public verifiable computation (CP-PVC) schemes for multivariate polynomial evaluation and matrix-vector multiplication, respectively. The proposed schemes work efficiently under the amortized model and, compared with previous PVC schemes for these computations, achieve confidentiality of computational results, while maintaining the property of public verifiability. The proposed schemes proved to be secure, efficient, and result-confidential. In addition, we provide the algorithms and experimental simulation to show the performance of the proposed schemes, which indicates that our proposal is also acceptable in practice.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Improved Protocol for Verifiable Polynomial Cloud Outsourcing Computation;Wireless Communications and Mobile Computing;2022-02-22

2. Improved Heuristic Data Management and Protection Algorithm for Digital China Cultural Datasets;ACM Transactions on Asian and Low-Resource Language Information Processing;2020-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3