Vehicle Speed and Position Estimation considering Microscopic Heterogeneous Car-Following Characteristics in Connected Vehicle Environments

Author:

Xia HanQing12ORCID,Liu XiaoMing12ORCID,Ma ZeChao12ORCID,Zhu Fang1ORCID,Zhang Lin1ORCID,Zhao YingJie1ORCID,Wang YuanRong3ORCID

Affiliation:

1. School of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China

2. Beijing Key Laboratory of Urban Traffic Control Technology, North China University of Technology, Beijing 100144, China

3. College of Applied Science and Technology of Beijing Union University, Beijing Union University, Beijing 100012, China

Abstract

This paper proposes a method for estimating the speed and position of unsampled vehicles using sampled data from connected automated vehicles (CAVs). The determination of vehicle speed and position on the road is a challenging and crucial task, as they can effectively reflect traffic flow characteristics and contribute to traffic state estimation and intersection signal timing optimization. Connected automated vehicles have the capability to upload their own trajectory data while also capturing trajectory data of surrounding vehicles through onboard sensors. Therefore, this paper proposes a novel approach to estimate the speed and position of unsampled vehicles. Firstly, using real vehicle trajectory data, the correlation between the velocity of following vehicles and the velocity of leading vehicles under different densities is analyzed, leading to the development of a velocity estimation model incorporating a speed correction factor. Secondly, the correlation between time headway, the rate of change of following vehicle acceleration, and traffic density is examined. To address the issue of heterogeneous behavior in vehicle following described by the Intelligent Driver Model (IDM), a real-time optimization model for estimating vehicle position by optimizing IDM parameters is proposed. The velocity estimation model and the position estimation model are summarized as two nonlinear optimization problems. Finally, the proposed method is validated using actual vehicle trajectory data. Experimental results demonstrate that when the number of connected automated vehicles (CAVs) is 2, the proposed method reduces the average absolute error by 30.73% and the standard deviation of the average absolute error by 42.8% compared to a linear model-based speed estimation method under different density conditions. Compared to a method that estimates vehicle position by calibrating desired gaps, the proposed method reduces the average absolute error by 38.2% and the standard deviation of the average absolute error by 41.7% under different density conditions. Furthermore, the proposed method exhibits good practicality under different CAV penetration rates.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3