An Improved Statistical Damage Constitutive Model for Granite under Impact Loading

Author:

Zhao Zhenwei12,Wu Bo3ORCID,Yang Xin14ORCID,Zhang Zhenya5,Li Zhantao5ORCID

Affiliation:

1. School of Civil Engineering, Fujian University of Technology, Fuzhou 350118, China

2. Fujian Provincial Key Laboratory of Advanced Technology and Informatization in Civil Engineering, Fuzhou 350118, China

3. College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China

4. Key Laboratory of Underground Engineering, Fujian University of Technology, Fuzhou 350118, China

5. School of Architecture and Transportation Engineering, Ningbo University of Technology, Ningbo 315211, China

Abstract

To study the impact properties of granite, the parameters (including the stress-strain curve, elasticity modulus, peak strength, and peak strain) of the test pieces in each group were determined via standard split-Hopkinson pressure bar tests. The results revealed that the prepeak stress-strain curves are approximately linear; the postpeak stress-strain curve declined sharply and exhibited the characteristics of brittle material failure after the stress exceeded the peak strength. In terms of the specimen form following failure, for increasing strain rate, the granite specimen became increasingly fragmented after failure. In addition, the single-parameter statistical damage constitutive model was improved, and a double-parameter statistical damage constitutive model for describing the total stress-strain curve of granite under the action of impact loading was proposed. The parameters of the statistical damage model, m and a, were obtained via fitting. The results revealed that the parameter m decreases with increasing elasticity modulus, whereas the parameter a increases. Similarly, the peak strength and the peak strain increased (in general) with increasing strain rate.

Funder

Fujian Provincial Natural Science Foundation Projects

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3