Robust Tracking Control of a Quadrotor UAV Based on Adaptive Sliding Mode Controller

Author:

Huang Tianpeng1,Huang Deqing1ORCID,Wang Zhikai1,Shah Awais1

Affiliation:

1. School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China

Abstract

In this paper, a robust adaptive sliding mode control scheme is developed for attitude and altitude tracking of a quadrotor unmanned aerial vehicle (UAV) system under the simultaneous effect of parametric uncertainties and consistent external disturbance. The underactuated dynamic model of the quadrotor UAV is first built via the Newton–Euler formalism. Considering the nonlinear and strongly coupled characteristics of the quadrotor, the controller is then designed using a sliding mode approach. Meanwhile, additional adaptive laws are proposed to further improve the robustness of the proposed control scheme against the parametric uncertainties of the system. It is proven that the control laws can eliminate the altitude and attitude tracking errors, which are guaranteed to converge to zero asymptotically, even under a strong external disturbance. Finally, numerical simulation and experimental tests are performed, respectively, to verify the effectiveness and robustness of the proposed controller, where its superiority to linear quadratic control and active disturbance rejection control has been demonstrated clearly.

Funder

Sichuan Science and Technology Program

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3