Highly Stable Surface-Enhanced Raman Spectroscopy Substrates Using Few-Layer Graphene on Silver Nanoparticles

Author:

Lee Jaehong1,Shin Sera1,Kang Subin1,Lee Sanggeun1,Seo Jungmok1,Lee Taeyoon1

Affiliation:

1. Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea

Abstract

Graphene can be effectively applied as an ultrathin barrier for fluids, gases, and atoms based on its excellent impermeability. In this work, few-layer graphene was encapsulated on silver (Ag) nanoparticles for the fabrication of highly stable surface-enhanced Raman scattering (SERS) substrates, which has strong resistance to oxidation of the Ag nanoparticles. The few-layer graphene can be successfully grown on the surface of the Ag nanoparticles through a simple heating process. To prevent the agglomeration of the Ag nanoparticles in the fabrication process, poly(methyl methacrylate) (PMMA) layers were used as a solid carbon source instead of methane (CH4) gas generally used as a carbon source for the synthesis of graphene. X-ray diffraction (XRD) spectra of the few-layer graphene-encapsulated Ag nanoparticles indicate that the few-layer graphene can protect the Ag nanoparticles from surface oxidation after intensive annealing processes in ambient conditions, giving the highly stable SERS substrates. The Raman spectra of Rhodamine 6G (R6G) deposited on the stable SERS substrates exhibit maintenance of the Raman signal intensity despite the annealing process in air. The facile approach to fabricate the few-layer graphene-encapsulated Ag nanoparticles can be effectively useful for various applications in chemical and biological sensors by providing the highly stable SERS substrates.

Funder

Ministry of Education, Science and Technology

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3