Numerical Study of Heat Transfer in Trefoil Buried Cable with Fluidized Thermal Backfill and Laying Parameter Optimization

Author:

Fu Chen-Zhao1,Si Wen-Rong1ORCID,Quan Lei2,Yang Jian2ORCID

Affiliation:

1. State Grid Shanghai Electrical Power Research Institute, Shanghai 200437, China

2. MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Trefoil buried cable is one of the important cable arrangements for the underground transmission line, and its heat transfer performance is relatively poor. By filling with fluidized thermal backfill material (FTB) around trefoil buried cables, the heat transfer would be efficiently enhanced, while the filling cost should also be considered. In the present study, the heat transfer process in the FTB trefoil buried cables is numerically studied, where the cable core loss and eddy current loss in the cable were coupled for the simulation. The heat transfer performances and ampacities for trefoil buried cables with different back fill materials were analysed and compared with each other. Then, the laying parameters for the parabolic-type FTB trefoil buried cables were optimized with the radial basis function neural network (RBNN) and genetic algorithm (GA). Firstly, it is found that, with FTB material, the maximum temperature in the cable core is obviously reduced, and the cable ampacity is greatly improved as compared with the cables buried around natural soil (NS). Secondly, when compared with flat-type FTB model, the heat transfer rate in the cable with parabolic-type FTB laying method would be slightly reduced, while the FTB amount used for the buried cables is greatly reduced. Finally, as for parabolic-type FTB trefoil buried cables, with proper design of geometric parameters (s1 = 0.290 m, s2 = 0.302 m, and l = 0.3 m with I = 1300 A) for the FTB laying cross section, the overall performance for the cable was optimized.

Funder

State Grid Corporation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3