Autopilot Design for a Compound Control Small-Scale Solid Rocket in the Initial Stage of Launch

Author:

Dong Tian1ORCID,Zhao Changjian1,Song Zhiguo1

Affiliation:

1. China Academy of Launch Vehicle Technology, Beijing 100076, China

Abstract

In this paper, an autopilot design method for a compound control small-scale solid rocket is proposed. The rocket has multiple actuators, including a flexible nozzle for pitching and yawing channels, aerodynamic fins for rolling channel, and lateral thrusters which work in on-off mode for all three channels. In order to keep the aircraft steady in the initial stage of launch when the dynamic pressure is low, the autopilot is aimed at optimizing the cooperation among the actuators. Firstly, without considering the discontinuous lateral thrust, the control law for flexible nozzle and aerodynamic fins is achieved via the sliding mode control approach. On this basis, an object to be controlled with choiceness is obtained for the lateral thrusters controlled loop. Secondly, the operation logic of lateral thrusters is programmed, regarding rolling moment as priority. Thirdly, after a continuous controller is obtained, a discretization method for the lateral thrusters control law is designed combining the characteristics of sliding mode control and Lyapunov’s stableness theorem. Finally, the fundamental cause why compound control improves the system stability is given theoretically. Simulation results validate the improved response performance and robustness against uncertainties and disturbance of the autopilot.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Various Control Algorithms Used for a Solid Rocket Motor to Achieve Vertical Takeoff and Vertical Landing;International Journal of Recent Technology and Engineering (IJRTE);2022-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3