Design of a Music Recommendation Model on the Basis of Multilayer Attention Representation

Author:

Lu Wei1ORCID

Affiliation:

1. Conservatory of Music of Hefei Normal University, Hefei 230601, China

Abstract

Current music recommendation systems can explore the general relationship between the users and songs to recommend music to the users; however, they cannot distinguish the different preferences of different users for the same song. For example, a user may like a song because of the singer, while another user will like it not for the singer but just because of the composition of the song or its melody. A recommender system that knows this difference would be more effective in recommending music to the users. To this end, this paper proposes a music recommendation model based on multilayer attention representation, which learns song representations from multidimensions using user-attribute information and song content information, and mines the preference relationship between users and songs. In order to distinguish the differences in user preferences for multidomain features of songs, a feature-dependent attention network is designed; in order to distinguish the differences in user preferences for different historical behaviors and to explore the temporal dependence of user behaviors, a song-dependent attention network is designed. Finally, the SoftMax function is used to calculate the distribution of users’ preferences for candidate songs and is used to generate recommendations. The experimental results on 30Music and MIGU datasets show that the proposed model achieves significant improvement in recall and MRR compared with the current recommendation models.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Improved Intelligent Machine Learning Approach to Music Recommendation Based on Big Data Techniques and DSO Algorithms;ICST Transactions on Scalable Information Systems;2024-04-08

2. Personalized Music Recommendation model based on Machine Learning;2022 8th International Conference on Smart Structures and Systems (ICSSS);2022-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3