Investigating the Frequency Spectrum Characteristic of Stress Wave under Multistage Loading Stress

Author:

Cheng Yun12ORCID,Song Zhanping23ORCID,Chang Xiaoxu4,Yang Tengtian5

Affiliation:

1. School of Civil Engineering, Yancheng Institute of Technology, Yancheng 224051, China

2. Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an 710055, China

3. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

4. Henan Land Rel Estate Group Co., Ltd., Zhumadian, Henan 463000, China

5. China Railway Bridge Engineering Bureau Group Co., Ltd., Tianjin 300300, China

Abstract

The stability of rock mass is destroyed by natural or human activities and leads to stress redistribution, causing the rock mass in a certain stressful environment. This study conducted a small disturbance impact tests on sandstone bar under loading stress by modified split Hopkinson pressure bar (SHPB). The results show that the reflection and transmission characteristics of stress wave are affected due to the loading stress changes in the sandstone porosity. The loading stress has a specific effect on the frequency spectrum distribution of the stress wave. The frequency spectrum curve has gone through the three stages, a gradual increase, then rapid attenuation, and finally a smooth development with the frequency increasing, and its dominant frequencies are mainly concentrated in 0∼2 kHz. The loading stress has a significant influence on the variation tendency of the dominant frequency. The dominant frequency experiences a slow increase and then tends to be stable, and the total energy of the frequency band shows a fast attenuation and then a gentle development, and its stress boundary point is σ/σc = 30%. The total energy attenuates as a first-order exponential function and its attenuation rate shows an exponential-linear function with the increasing loading stress, the farther away from the shock end, the faster the total energy attenuation is. The sandstone can filter the high-frequency wave and the low-frequency wave can penetrate rock media better. The closer the distance to the impact source, the greater the total energy of the frequency band. The frequency band energy is mainly concentrated in 0∼36.62 kHz, the higher the frequency of the frequency band is, the smaller the energy ratio is. Therefore, those conclusions can provide a reference for the evolution analysis of the stress wave spectrum in an excavated rock mass.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3