A Study on Rotary Friction Welding of Titanium Alloy (Ti6Al4V)

Author:

My Nu Ho Thi12ORCID,Le Truyen The1,Minh Luu Phuong2,Loc Nguyen Huu2

Affiliation:

1. Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Ho Chi Minh City 760310, Vietnam

2. Ho Chi Minh City University of Technology-VNUHCM, 268 Ly Thuong Kiet Street, Ho Chi Minh City 740400, Vietnam

Abstract

The selection of high-strength titanium alloys has an important role in increasing the performance of aerospace structures. Fabricated structures have a specific role in reducing the cost of these structures. However, conventional fusion welding of high-strength titanium alloys is generally conducive to poor mechanical properties. Friction welding is a potential method for intensifying the mechanical properties of suitable geometry components. In this paper, the rotary friction welding (RFW) method is used to study the feasibility of producing similar metal joints of high-strength titanium alloys. To predict the upset and temperature and identify the safe and suitable range of parameters, a thermomechanical model was developed. The upset predicted by the finite element simulations was compared with the upset obtained by the experimental results. The numerical results are consistent with the experimental results. Particularly, high upset rates due to generated power density and forging pressure overload that occurred during the welding process were investigated. The performances of the welded joints are evaluated by conducting microstructure studies and Vickers hardness at the joints. The titanium rotary friction welds achieve a higher tensile strength than the base material.

Funder

Ho Chi Minh City University of Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3