An Optimization Technique of the 3D Indoor Map Data Based on an Improved Octree Structure

Author:

Yu Xiaomin12ORCID,Wang Huiqiang1ORCID,Lv Hongwu1ORCID,Fu Junqiang1

Affiliation:

1. College of Computer Science and Technology, Harbin Engineering University, Harbin, Heilongjiang, China

2. College of Computer and Control Engineering, Qiqihar University, Qiqihar, Heilongjiang, China

Abstract

The construction and retrieval of indoor maps are important for indoor positioning and navigation. It is necessary to ensure a good user experience while meeting real-time requirements. Unlike outdoor maps, indoor space is limited, and the relationship between indoor objects is complex which would result in an uneven indoor data distribution and close relationship between the data. A data storage model based on the octree scene segmentation structure was proposed in this paper initially. The traditional octree structure data storage model has been improved so that the data could be backtracked. The proposed method will solve the problem of partition lines within the range of the object data and improve the overall storage efficiency. Moreover, a data retrieval algorithm based on octree storage structure was proposed. The algorithm adopts the idea of “searching for a point, points around the searched point are within the searching range.” Combined with the octree neighbor retrieval methods, the closure constraints are added. Experimental results show that using the improved octree storage structure, the retrieval cost is 1/8 of R-tree. However, by using the neighbor retrieval, it improved the search efficiency by about 27% on average. After adding the closure constraint, the retrieval efficiency increases by 25% on average.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3