Main Girder Deflection Variations in Cable-Stayed Bridge with Temperature over Various Time Scales

Author:

Jin Dian1,Liu Xiaoling1ORCID,Wang Bing2ORCID,Huang Qiao3

Affiliation:

1. Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China

2. School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China

3. School of Transportation, Southeast University, Nanjing 210096, China

Abstract

The cable-stay bridge is a complex hyperstatic structure with large span and slender proportions, making it highly sensitive to temperature, especially in terms of deformation. A cable-stayed bridge with a steel tower and steel box girder was taken as an example in this study to explore the temperature effects on the deflection of the main girder under different time scales. The temperature gradient characteristics of the girder and tower were observed; then, the daily and annual variations of girder deflection were investigated. Finally, the main influencing factors of deflection variations with temperature were verified by finite element simulation. The results show that the girder/pylon temperature gradient under current Chinese code is not applicable to cable-stayed bridges, and the measured values are usually underestimated. In terms of diurnal variations, the deflection is greatly affected by the temperature difference between the cable and beam and the temperature gradient of the girder. The annual variation law of deflection data and temperature at 1 : 00am shows obvious linear characteristics. The daily deflection at 1 : 00am., after removing the temperature effect, can thus be used as an index to evaluate the long-term degradation of bridges. This is a workable approach for efficient and rapid mining of large sets of monitoring data.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3