Affiliation:
1. Engineering Research Center for Metal Rubber, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
Abstract
To reduce the vibration of the plate-like structure under different boundary conditions, an all-metal damping composite structure was proposed, and its damping layer was entangled metallic wire material (EMWM). A series of quasi-static compression tests were carried out to investigate the damping property of the EMWM layer. A modal test system was set up to evaluate whether the EMWM could dissipate vibration energy. The evaluation results showed that the displacement deviation between the baseplate and constraining plate of the structure was large enough and the EMWM could dissipate vibration energy in the form of friction. The modal characteristics of the composite structure with different core thicknesses under different boundary conditions were researched in this paper by experimental modal tests. The outcomes showed that the damping ratio of the structure would be significantly improved by adding EMWM and constraining plate. The larger the thickness of the core thickness is, the larger the damping ratio and vibration reduction performance of the composite structure are. This paper provides a new technical way for the damping design of high temperature plate structure.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献