The Interaction Test of Binary Mixtures of Endocrine-Disrupting Chemicals Using In Vitro Bioassays

Author:

Tang Qianqian1,Lei Bingli1ORCID,Liu Yun2,Zhang Xiaolan1,Liu Qian1,Sun Su1

Affiliation:

1. Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China

2. South China Institute of Environmental Sciences, MEP, 7 West Street, Yuancun, Tianhe District, Guangzhou 510655, China

Abstract

Typical environmental endocrine-disrupting chemicals (EDCs) such as estradiol valerate (EV), diethylstilbestrol (DES), di-2-ethylhexyl phthalate (DEHP), mono-2-ethylhexyl phthalate (MEHP), and bisphenol A (BPA) have a strong reproductive and developmental toxicity at low concentrations. However, information on their joint toxicity is scarce. In this study, we evaluated the combined effects of EV and other four EDCs (DES, DEHP, MEHP, and BPA) on the human breast MCF-7 cells by detecting the cell proliferation, intracellular reactive oxygen species (ROS) levels, and estrogen receptor alpha (ERα) protein expression using equal concentration ratio method. The results showed that, after exposure for 24, 48, and 72 h, single EV, DES, and BPA can promote the proliferation of MCF-7 human breast cancer cells, and EV has the strongest effect in inducing cell proliferation. DEHP and MEHP cannot induce MCF-7 cell proliferation for all exposure time, while cell proliferation induced by EV was significantly attenuated by DES, BPA, DEHP, and MEHP when they mixed with EV. For intracellular ROS, single EV, BPA, DES, DEHP, and MEHP elevated intracellular ROS levels for different exposure time. Similar to the cell proliferation, DES and BPA decreased intracellular ROS levels induced by EV when they mixed with EV for 24 h. EV, DES, and BPA exposed alone or combined with EV upregulated the ERα protein expression. However, DEHP and MEHP exposed alone or combined with EV had no effect on ERα protein expression, indicating that DEHP or MEHP could attenuate ERα protein expression upregulated by EV. These results showed that the joint toxicity of binary mixtures of EV and other EDCs do not interact in a synergistic fashion in inducing cell proliferation, intracellular ROS levels, and ERα protein expression. These findings have important implications in the human risk assessments of EV mixed with other EDCs in the environment.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3